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Please remember the rules of honest conduct:

• Programming exercises are to be solved alone

• Do not copy code from any source

• Do not show your code to others

Hand-in: Sunday, 16. December 2018, 23:59 clock via Online Judge (source code only).
�estions concerning the assignment will be discussed as usual in the forum.

�ose who cannot remember the past are condemned to repeat it.
— Dynamic Programming

Exercise P11.1 Parenthesis.

Input

You are given an arithmetic expression containing n numbers and n− 1 operators, each either+ or−.
Your goal is to perform the operations in an order that maximizes the value of the expression. �at is,
insert parentheses into the expression so that its value is maximized.

For example, for the expression 6−3−2+5, the optimal pacing of parhenthisis is: 6−(3−2)+5 = 10.

Input �e �rst line of the input is an integer N , 1 ≤ N ≤ 105, denoting the number of integers
in the expression. �e next line contains an expression of the form v1 op1 v2 op2 v3 op3 . . . opN−1 vN
where opi ∈ {+,−} for i ∈ [1 . . . N − 1] and 1 ≤ vj ≤ 109 for j ∈ [1 . . . N ]

Output �e output contains a single line that represents the maximum value of the expression that
can be obtained by placing zero or more pairs of parenthesis.

Grading You get 3 bonus points if your program works for all inputs. Your algorithm must complete
the solution inO(N) time complexity, andO(N) space complexity. Submit your Main.java at https:
//judge.inf.ethz.ch/team/websubmit.php?cid=25012&problem=AD8H11P1. �e enrollment password
is “asymptotic”.

Example

Input:

4

6 - 3 - 2 + 5

Output:

10
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Notes

For this exercisewe provide an archive containing a program template available at https://www.cadmo.
ethz.ch/education/lectures/HS18/DA/uebungen/AD8H11P1.Parenthesis.zip �e archive also con-
tains additional test cases (which di�er from the ones used for grading). Importing any additional
Java class is not allowed (with the exception of the already imported ones java.io.{InputStream,
OutputStream} and java.util.Scanner class.

Solution

�e problem can be solved using the main idea of the matrix chain multiplication algorithm.

To solve the subexpression vi . . . vj , we can split it into two problems at the k-th operator, and recur-
sively solve the subexpressions vi . . . vk and vk+1 . . . vj . In doing so, we must consider all combinations
of the minimizing and maximizing subproblems.

Let M [i, j] be the maximum value obtainable from the subexpression beginning at vi and ending at
vj (i.e., vi opi . . . opj−1 vj), and let m[i, j] be the minimum value obtainable from the subexpression
beginning at vi and ending at vj . �e base cases areM [i, i] = m[i, i] = vi, for all i ∈ [1 . . . N ].

�e recursive function is then de�ned as:

M [a, b] = max
a≤k<b

(max(M [a, k] opk M [k + 1, b],M [a, k] opk m[k + 1, b],

m[a, k] opk M [k + 1, b],m[a, k] opk m[k + 1, b]))
(1)

m[a, b] = min
a≤k<b

(min(M [a, k] opk M [k + 1, b],M [a, k] opk m[k + 1, b],

m[a, k] opk M [k + 1, b],m[a, k] opk m[k + 1, b]))
(2)

Using dynamic programming, this strategy will result in a solution with complexity of O(n3), as there
are O(n2) subproblems, and at each level we have to consider b− a of them i.e. O(n).

However, we can do be�er, optimizing the solution even further. Instead of m and M lets consider
mink which will representm[k, n] andmaxk that will representM [k, n] for some k ∈ [1 . . . n] where
n is the number of the sequence. We can observe the following:

1. If all signs are “+”, then we can calculatemink andmaxk by iterating k from n down to 1:

mink = mink+1 + vk and maxk = maxk+1 + vk

2. If there is only one “−”, such that the sign is before vk, then mink can be calculated by placing
the parenthesis a�er the “−” sign and at the end of the expression. �is essentially means that
we are negating all positive numbers a�er the negative sign.

posk+1 =
n∑

i=k+1

vi andmink = −posk+1 − vk

�e calculation formaxk remains the same.
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3. If there is more than one “−”, placed before {vk1 , vk2 , . . . vkm} (ki < kj for all i < j) then
minki can be calculated by negating all positive numbers between ki and ki+1 i.e. placing the
parenthesis before vki and a�er vki−1.

On the other hand, for calculatingmaxk once “−” is placed before vk, we can do the following:

maxk = max(vk +maxk+1, vk −mink+1)

�is means that in order to design the algorithm, we can place all numbers in an array, such that we
negate the ones that are right a�er a “−” operator. According to the observation above, we would need
a variable to keep track of the sum of the positive numbers, as well as two other variable to keep the
min and max. �e solution is given below:

1 long max = 0;

2 long min = 0;

3 long pos = 0;

4
5 for (int i = N - 1; i >= 0; i -= 1) {

6 if (v[i] > 0) {

7 max += v[i];

8 min += v[i];

9 pos += v[i]; // keeps track of positive numbers

10 } else {

11 max = Math.max(v[i] - min , v[i] + max);

12 //

13 // the positive numbers must be negated. However we have already added them

14 // into min (line 8), thus in order to negate them , we must remove them twice

15 //

16 min += v[i] - 2 * pos;

17 pos = 0;

18 }

19 }

20
21 out.println(max);

�e algorithm above, traverses the values in inverse order, such that at each position i is calculating
mini andmaxi. As the �rst number in the array will always be positive, the max will hold the solution
to the problem, a�er the loop terminates.

Exercise P11.2 Line Breaks.

One of the basic problems of typese�ing is breaking thewords into lines and then breaking the lines into
pages, with the resulting layout as beautiful and readable as possible. Your task is a (greatly simpli�ed)
version of the �rst part, that is to decide where to place the line breaks in a given text.

�e input text T is a sequence of paragraphs P1, . . . , Pk that are processed independently, and each
paragraph Pi is a list of ni words and has given page width wi > 0. Every word in paragraph Pi has
length at most wi.

�e output is the same text with one or more consecutive words on one line, every two words on a line
are separated by exactly one space. All the characters (including spaces) have the same width and so
the length len(L) of line L is the number of word-characters and spaces in between them, for example
“This is an example.” has length 4 + 1 + 2 + 1 + 2 + 1 + 8 = 19.

�e goal is to format the text such that every line of paragraph Pi has length at most wi, but also as
nicely as possible: Informally, we want all the lines to have length as close to wi as possible. And
formally, we assign every line L penalty (wi− len(L))2, that is the square of the number of spaces you

3



would need to add to make the line exactly wi characters long. For example a line with length exactly
w has penalty 0 and a line with just one single-character word would have penalty (wi − 1)2. �e last
line of the resulting paragraph is an exception – the penalty of this line is always 0, as the length of the
last line does not ma�er for typese�ing.

For every paragraph, the goal is to �nd the optimal line breaks that minimize the sum of the penalties of
the resulting lines. Note that a “greedy” solution that would make every line as long as possible before
starting a new line is generally not optimal – see the example below.

Input �e input consists of several paragraphs. �e �rst line of the �le contains the integer k > 0,
the number of paragraphs to follow.

Each paragraph Pi is independent of the others and consists of several lines: �e �rst line contains the
integers ni > 0, the number of words of the paragraph, and wi > 0, the width of the page, separated
by a space. �e following ni lines contain the words of the paragraph, one word each.

�e words may consist of English le�ers, numbers and the following characters1: -.,?!:;’"()[]{}

Output For every paragraph, the output should contain a single line with the smallest possible
penalty.

Grading �is exercise awards no points. �e program should be reasonably e�cient and work in
O(w1n1 + · · · + wknk) time complexity. Submit your Main.java at https://judge.inf.ethz.ch/

team/websubmit.php?cid=25012&problem=AD8H11P2. �e enrollment password is “asymptotic”.

Examples

Input

2

9 9

A

B

C

D

E

F

GGGGGGGGG

HHH

I.

8 18

Lorem

ipsum

dolor

sit

amet,

consectetur

adipiscing

elit.

Output

1But the exact set should not ma�er to your program anyway.
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32

107

Example optimal forma�ing with marks for page width and line penalties.

A B C | 16

D E F | 16

GGGGGGGGG| 0

HHH I. | 0 (last line)

Lorem ipsum | 49

dolor sit amet, | 9

consectetur | 49

adipiscing elit. | 0 (last line)

Notes For this exercise we provide an archive containing a program template available at https://
www.cadmo.ethz.ch/education/lectures/HS18/DA/uebungen/AD8H11P2.LineBreaks.zip�earchive
also contains additional test cases (which di�er from the ones used for grading). Importing any addi-
tional Java class isnot allowed (with the exception of the already imported ones java.io.{InputStream,
OutputStream} and java.util.Scanner class.

Solution Again, we will use dynamic programming for this task: for every i ∈ {0, . . . , n}, let mi be
the total penalty if the last line break was just before word wi (not considering the special case for last
word of a paragraph here). We may set m0 = 0, as a break before the word w0 is the start of the text.
Note that the actual characters of the text did not ma�er, only the word lengths.

Now to compute mi if we know all previous values of mj<i, consider how can the solution with the
last break before wi look: For some x > 0, it will consist of the best solution with the last line break
before wi−x, a line break and then x words wi−x, wi−x+1, . . . , wi−1 on the last line. �e penalty of the
best solution with the last line break before wi−x is already known in mi−x, and it is straightforward
to compute the penalty for line with words wi−x, wi−x+1, . . . , wi−1. If we try all the possible values of
0 < x ≤ i such that the last line has length at most w, we takemi as the minimal total penalty over all
such x. We might need to checkO(w) values of x since x ≤ (w+1)/2 (there can be at most (w+1)/2
space-separated words on a line).

Now for the last line of paragraph, we only need to change the waymn is computed: We still consider
all feasible values of x (with the last line ��ing into w characters) and take minimum ofmn−x, but do
not add the last line penalty. �is can be accomplished with a simple condition.

�is gives us solution with running time O(nw2), since we try O(w) values of x for every of n
words, and in every case it can take us O(w) time to calculate the penalty of a given range of words
wi−x, wi−x+1, . . . , wi−1 on a single line.

However, this can be made faster by for example pre-computing the sum of word lengths as si =∑i
j=0 |wj |, and then the length of line with words wa, . . . , wb is sb − sa + (b − a − 1) (last part for

the spaces). Another solution is to start with x = 1 and increment it, and in every step remember the
length of the considered last line so far, incrementing it with every added word – the penalty is then
computed in O(1) time.

With either solution, we get O(nw) time solution.
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