
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 3. December 2018
Markus Püschel, David Steurer

Datenstrukturen & Algorithmen Bla� P11 HS 18

Please remember the rules of honest conduct:

• Programming exercises are to be solved alone

• Do not copy code from any source

• Do not show your code to others

Hand-in: Sunday, 16. December 2018, 23:59 clock via Online Judge (source code only).
�estions concerning the assignment will be discussed as usual in the forum.

�ose who cannot remember the past are condemned to repeat it.
— Dynamic Programming

Exercise P11.1 Parenthesis.

Input

You are given an arithmetic expression containing n numbers and n− 1 operators, each either+ or−.
Your goal is to perform the operations in an order that maximizes the value of the expression. �at is,
insert parentheses into the expression so that its value is maximized.

For example, for the expression 6−3−2+5, the optimal pacing of parhenthisis is: 6−(3−2)+5 = 10.

Input �e �rst line of the input is an integer N , 1 ≤ N ≤ 105, denoting the number of integers
in the expression. �e next line contains an expression of the form v1 op1 v2 op2 v3 op3 . . . opN−1 vN
where opi ∈ {+,−} for i ∈ [1 . . . N − 1] and 1 ≤ vj ≤ 109 for j ∈ [1 . . . N]

Output �e output contains a single line that represents the maximum value of the expression that
can be obtained by placing zero or more pairs of parenthesis.

Grading You get 3 bonus points if your program works for all inputs. Your algorithm must complete
the solution inO(N) time complexity, andO(N) space complexity. Submit your Main.java at https:
//judge.inf.ethz.ch/team/websubmit.php?cid=25012&problem=AD8H11P1. �e enrollment password
is “asymptotic”.

Example

Input:

4

6 - 3 - 2 + 5

Output:

10

https://judge.inf.ethz.ch/team/websubmit.php?cid=25012&problem=AD8H11P1
https://judge.inf.ethz.ch/team/websubmit.php?cid=25012&problem=AD8H11P1

Notes

For this exercisewe provide an archive containing a program template available at https://www.cadmo.
ethz.ch/education/lectures/HS18/DA/uebungen/AD8H11P1.Parenthesis.zip �e archive also con-
tains additional test cases (which di�er from the ones used for grading). Importing any additional
Java class is not allowed (with the exception of the already imported ones java.io.{InputStream,
OutputStream} and java.util.Scanner class.

Solution

�e problem can be solved using the main idea of the matrix chain multiplication algorithm.

To solve the subexpression vi . . . vj , we can split it into two problems at the k-th operator, and recur-
sively solve the subexpressions vi . . . vk and vk+1 . . . vj . In doing so, we must consider all combinations
of the minimizing and maximizing subproblems.

Let M [i, j] be the maximum value obtainable from the subexpression beginning at vi and ending at
vj (i.e., vi opi . . . opj−1 vj), and let m[i, j] be the minimum value obtainable from the subexpression
beginning at vi and ending at vj . �e base cases areM [i, i] = m[i, i] = vi, for all i ∈ [1 . . . N].

�e recursive function is then de�ned as:

M [a, b] = max
a≤k<b

(max(M [a, k] opk M [k + 1, b],M [a, k] opk m[k + 1, b],

m[a, k] opk M [k + 1, b],m[a, k] opk m[k + 1, b]))
(1)

m[a, b] = min
a≤k<b

(min(M [a, k] opk M [k + 1, b],M [a, k] opk m[k + 1, b],

m[a, k] opk M [k + 1, b],m[a, k] opk m[k + 1, b]))
(2)

Using dynamic programming, this strategy will result in a solution with complexity of O(n3), as there
are O(n2) subproblems, and at each level we have to consider b− a of them i.e. O(n).

However, we can do be�er, optimizing the solution even further. Instead of m and M lets consider
mink which will representm[k, n] andmaxk that will representM [k, n] for some k ∈ [1 . . . n] where
n is the number of the sequence. We can observe the following:

1. If all signs are “+”, then we can calculatemink andmaxk by iterating k from n down to 1:

mink = mink+1 + vk and maxk = maxk+1 + vk

2. If there is only one “−”, such that the sign is before vk, then mink can be calculated by placing
the parenthesis a�er the “−” sign and at the end of the expression. �is essentially means that
we are negating all positive numbers a�er the negative sign.

posk+1 =
n∑

i=k+1

vi andmink = −posk+1 − vk

�e calculation formaxk remains the same.

2

https://www.cadmo.ethz.ch/education/lectures/HS18/DA/uebungen/AD8H11P1.Parenthesis.zip
https://www.cadmo.ethz.ch/education/lectures/HS18/DA/uebungen/AD8H11P1.Parenthesis.zip

3. If there is more than one “−”, placed before {vk1 , vk2 , . . . vkm} (ki < kj for all i < j) then
minki can be calculated by negating all positive numbers between ki and ki+1 i.e. placing the
parenthesis before vki and a�er vki−1.

On the other hand, for calculatingmaxk once “−” is placed before vk, we can do the following:

maxk = max(vk +maxk+1, vk −mink+1)

�is means that in order to design the algorithm, we can place all numbers in an array, such that we
negate the ones that are right a�er a “−” operator. According to the observation above, we would need
a variable to keep track of the sum of the positive numbers, as well as two other variable to keep the
min and max. �e solution is given below:

1 long max = 0;

2 long min = 0;

3 long pos = 0;

4
5 for (int i = N - 1; i >= 0; i -= 1) {

6 if (v[i] > 0) {

7 max += v[i];

8 min += v[i];

9 pos += v[i]; // keeps track of positive numbers

10 } else {

11 max = Math.max(v[i] - min , v[i] + max);

12 //

13 // the positive numbers must be negated. However we have already added them

14 // into min (line 8), thus in order to negate them , we must remove them twice

15 //

16 min += v[i] - 2 * pos;

17 pos = 0;

18 }

19 }

20
21 out.println(max);

�e algorithm above, traverses the values in inverse order, such that at each position i is calculating
mini andmaxi. As the �rst number in the array will always be positive, the max will hold the solution
to the problem, a�er the loop terminates.

Exercise P11.2 Line Breaks.

One of the basic problems of typese�ing is breaking thewords into lines and then breaking the lines into
pages, with the resulting layout as beautiful and readable as possible. Your task is a (greatly simpli�ed)
version of the �rst part, that is to decide where to place the line breaks in a given text.

�e input text T is a sequence of paragraphs P1, . . . , Pk that are processed independently, and each
paragraph Pi is a list of ni words and has given page width wi > 0. Every word in paragraph Pi has
length at most wi.

�e output is the same text with one or more consecutive words on one line, every two words on a line
are separated by exactly one space. All the characters (including spaces) have the same width and so
the length len(L) of line L is the number of word-characters and spaces in between them, for example
“This is an example.” has length 4 + 1 + 2 + 1 + 2 + 1 + 8 = 19.

�e goal is to format the text such that every line of paragraph Pi has length at most wi, but also as
nicely as possible: Informally, we want all the lines to have length as close to wi as possible. And
formally, we assign every line L penalty (wi− len(L))2, that is the square of the number of spaces you

3

would need to add to make the line exactly wi characters long. For example a line with length exactly
w has penalty 0 and a line with just one single-character word would have penalty (wi − 1)2. �e last
line of the resulting paragraph is an exception – the penalty of this line is always 0, as the length of the
last line does not ma�er for typese�ing.

For every paragraph, the goal is to �nd the optimal line breaks that minimize the sum of the penalties of
the resulting lines. Note that a “greedy” solution that would make every line as long as possible before
starting a new line is generally not optimal – see the example below.

Input �e input consists of several paragraphs. �e �rst line of the �le contains the integer k > 0,
the number of paragraphs to follow.

Each paragraph Pi is independent of the others and consists of several lines: �e �rst line contains the
integers ni > 0, the number of words of the paragraph, and wi > 0, the width of the page, separated
by a space. �e following ni lines contain the words of the paragraph, one word each.

�e words may consist of English le�ers, numbers and the following characters1: -.,?!:;’"()[]{}

Output For every paragraph, the output should contain a single line with the smallest possible
penalty.

Grading �is exercise awards no points. �e program should be reasonably e�cient and work in
O(w1n1 + · · · + wknk) time complexity. Submit your Main.java at https://judge.inf.ethz.ch/

team/websubmit.php?cid=25012&problem=AD8H11P2. �e enrollment password is “asymptotic”.

Examples

Input

2

9 9

A

B

C

D

E

F

GGGGGGGGG

HHH

I.

8 18

Lorem

ipsum

dolor

sit

amet,

consectetur

adipiscing

elit.

Output

1But the exact set should not ma�er to your program anyway.

4

https://judge.inf.ethz.ch/team/websubmit.php?cid=25012&problem=AD8H11P2
https://judge.inf.ethz.ch/team/websubmit.php?cid=25012&problem=AD8H11P2

32

107

Example optimal forma�ing with marks for page width and line penalties.

A B C | 16

D E F | 16

GGGGGGGGG| 0

HHH I. | 0 (last line)

Lorem ipsum | 49

dolor sit amet, | 9

consectetur | 49

adipiscing elit. | 0 (last line)

Notes For this exercise we provide an archive containing a program template available at https://
www.cadmo.ethz.ch/education/lectures/HS18/DA/uebungen/AD8H11P2.LineBreaks.zip�earchive
also contains additional test cases (which di�er from the ones used for grading). Importing any addi-
tional Java class isnot allowed (with the exception of the already imported ones java.io.{InputStream,
OutputStream} and java.util.Scanner class.

Solution Again, we will use dynamic programming for this task: for every i ∈ {0, . . . , n}, let mi be
the total penalty if the last line break was just before word wi (not considering the special case for last
word of a paragraph here). We may set m0 = 0, as a break before the word w0 is the start of the text.
Note that the actual characters of the text did not ma�er, only the word lengths.

Now to compute mi if we know all previous values of mj<i, consider how can the solution with the
last break before wi look: For some x > 0, it will consist of the best solution with the last line break
before wi−x, a line break and then x words wi−x, wi−x+1, . . . , wi−1 on the last line. �e penalty of the
best solution with the last line break before wi−x is already known in mi−x, and it is straightforward
to compute the penalty for line with words wi−x, wi−x+1, . . . , wi−1. If we try all the possible values of
0 < x ≤ i such that the last line has length at most w, we takemi as the minimal total penalty over all
such x. We might need to checkO(w) values of x since x ≤ (w+1)/2 (there can be at most (w+1)/2
space-separated words on a line).

Now for the last line of paragraph, we only need to change the waymn is computed: We still consider
all feasible values of x (with the last line ��ing into w characters) and take minimum ofmn−x, but do
not add the last line penalty. �is can be accomplished with a simple condition.

�is gives us solution with running time O(nw2), since we try O(w) values of x for every of n
words, and in every case it can take us O(w) time to calculate the penalty of a given range of words
wi−x, wi−x+1, . . . , wi−1 on a single line.

However, this can be made faster by for example pre-computing the sum of word lengths as si =∑i
j=0 |wj |, and then the length of line with words wa, . . . , wb is sb − sa + (b − a − 1) (last part for

the spaces). Another solution is to start with x = 1 and increment it, and in every step remember the
length of the considered last line so far, incrementing it with every added word – the penalty is then
computed in O(1) time.

With either solution, we get O(nw) time solution.

5

https://www.cadmo.ethz.ch/education/lectures/HS18/DA/uebungen/AD8H11P2.LineBreaks.zip
https://www.cadmo.ethz.ch/education/lectures/HS18/DA/uebungen/AD8H11P2.LineBreaks.zip

